Please wait a minute...
  2021, Vol. 2 Issue (3): 205-212    doi: 10.23919/ICN.2021.0014
    
Download: PDF (2041 KB)      HTML
Export: BibTeX | EndNote (RIS)      
Received: 03 May 2020      Online: 07 December 2021
Cite this article:

. . , 2021, 2: 205-212.

URL:

http://icn.tsinghuajournals.com/10.23919/ICN.2021.0014     OR     http://icn.tsinghuajournals.com/Y2021/V2/I3/205

Fig.1 
Status Condition ${r}_{s}'$
Packet loss (informed by TACK) $ {r}_{s}-\mathrm{\Delta }r $
Normal $ {r}_{s}\cong {r}_{r} $ $ {r}_{s}+\mathrm{\Delta }r $
Recovery $ {r}_{s}<{r}_{r} $ $ {r}_{s}-\mathrm{\Delta }r $
SDelay $ {r}_{s}>{r}_{r} $ $ {r}_{r}-\mathrm{\Delta }r $
Tab.1 
Fig.2 
Fig.3 
Fig.4 
Fig.5 
Fig.6 
Parameter MLP RNN LSTM
H H H
I 0.017469 ?0.02966 ?0.02989 0.025806 0.022930 ?0.05990 0.021853 0.029567 ?0.00238
0.018528 ?0.04148 ?0.04198 0.035838 0.022242 ?0.00737 0.027308 0.033341 ?0.01758
0.023783 ?0.01285 ?0.01278 0.014112 0.033657 ?0.09089 0.027254 0.046296 0.078832
0.026225 ?0.03231 ?0.03241 0.027393 0.035162 ?0.02345 0.040152 0.028960 0.001308
0.029000 ?0.05989 ?0.06130 0.053122 0.034049 ?0.06816 0.045532 ?0.00361 ?0.19660
Bih ?4.69660 12.04260 12.22133 ?10.38300 ?6.01907 4.959404 ?4.94479 ?8.09735 9.796071
O 42.01379 ?10.81140 ?11.91580 29.38767 28.42662 ?16.1278 29.53358 29.60497 ?11.12780
Bho 40.485634 27.139341 26.58925
Tab.2 
Fig.7 
Fig.8 
Fig.9 
1   M. Masirap, M. H. Amaran, Y. M. Yussoff, R. Ab Rahman, and H. Hashim, Evaluation of reliable UDP-based transport protocols for Internet of Things (IoT), presented at 2016 IEEE Symp. Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 2016, pp. 200–205.
2   M. H. Wang, L. W. Chen, P. W. Chi, and C. L. Lei SDUDP: A reliable UDP-based transmission protocol over SDN[J]. IEEE Access, 2017, 5: 5904- 5916
doi: 10.1109/ACCESS.2017.2693376
3   D. Syzov, D. Kachan, K. Karpov, N. Mareev, and E. Siemens, Custom UDP-based transport protocol implementation over DPDK, in Proc. 7th Int. Conf. Applied Innovation in IT, Köthen, Germany, 2019, pp. 13–17.
4   T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz, Multipath QUIC: A deployable multipath transport protocol, presented at 2018 IEEE Int. Conf. Communications (ICC), Kansas City, MO, USA, 2018, pp. 1–7.
5   M. J. Anjum, I. Raza, and S. A. Hussain, Real-time multipath transmission protocol (RMTP): A software defined networks (SDN) based routing protocol for data centric networks, presented at 2019 Int. Conf. Electrical, Communication, and Computer Engineering (ICECCE), Swat, Pakistan, 2019, pp. 1–6.
6   A. Tanaka and M. Harayama Path priority control method for simultaneous multi-path communication, (in Japanese)[J]. IEICE Tech. Rep., 2014, 113 (472): 143- 148
7   W. Mano and M. Harayama Improved communication fairness of SMPC, (in Japanese)[J]. IEICE Tech. Rep., 2019, 2018- 2134
8   A. Tealab Time series forecasting using artificial neural networks methodologies: A systematic review[J]. Future Comput. Inform. J., 2018, 3 (2): 334- 340
doi: 10.1016/j.fcij.2018.10.003
9   E. Chong, C. Han, and F. C. Park Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies[J]. Expert Syst. Appl., 2017, 83: 187- 205
doi: 10.1016/j.eswa.2017.04.030
10   K. Miyazaki and Y. Matsuo Stock prediction analysis using deep learning technique, (in Japanese)[J]. JSAI, 2017, 2017 2D3-OS-19a-3
11   T. Matsui and T. Shiotsuki Stock market prediction using LSTMs, (in Japanese)[J]. JSAI, 2017, 2017 2D3-OS-19a-2
12   Z. Md. Fadlullah, F. X. Tang, B. M. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizutani State-of-the-Art deep learning: evolving machine intelligence toward tomorrow’s, intelligent network traffic control system[J]. IEEE Commun. Surv. Tut., 2017, 19 (4): 2432- 2455
doi: 10.1109/COMST.2017.2707140
13   H. Osanai, A. Nakao, Y. Week, M. Yamaguchi, and M. Oguchi RNN prediction of network traffic fluctuation, (in Japanese)[J]. DEIM Forum, 2018, F1-6
14   K. Cheon, J. Kim, M. Hamadache, and D. Lee On replacing PID controller with deep learning controller for DC motor system[J]. J. Automat. Control Eng., 2015, 3 (6): 452- 456
doi: 10.12720/joace.3.6.452-456
15   Q. X. Wu, C. M. Lin, W. B. Fang, F. Chao, L. Z. Yang, C. J. Shang, and C. L. Zhou Self-organizing brain emotional learning controller network for intelligent control system of mobile robots[J]. IEEE Access, 2018, 6: 59096- 59108
doi: 10.1109/ACCESS.2018.2874426
16   V. T. Yen, W. Y. Nan, and P. Van Cuong Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators[J]. Neural Comput. Appl., 2019, 31 (11): 6945- 6958
doi: 10.1007/s00521-018-3520-3
17   G. Z. Zhang, W. H. Hu, D. Cao, Q. Huang, J. B. Yi, Z. Chen, and F. Blaabjerg Deep reinforcement learning-based approach for proportional resonance power system stabilizer to prevent ultra-low-frequency oscillations[J]. IEEE Trans. Smart Grid, 2020, 11 (6): 5260- 5272
doi: 10.1109/TSG.2020.2997790
18   A. M. A. Aela, J. P. Kenne, and H. A. Mintsa, Adaptive neural network and nonlinear electrohydraulic active suspension control system, J. Vibrat. Control, doi: 10.1177/1077546320975979.
19   Y. G. Sun, J. Q. Xu, G. B. Lin, and N. Sun Adaptive neural network control for maglev vehicle systems with time-varying mass and external disturbance[J]. Neural Comput. Appl., 2021, 1- 12
20   A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, et al., The QUIC transport protocol: Design and internet-scale deployment, in Proc. Conf. ACM Special Interest Group on Data Communication, New York, NY, USA, 2017, pp. 183–196.
21   B. Montazeri, Y. L. Li, M. Alizadeh, and J. Ousterhout, Homa: A receiver-driven low-latency transport protocol using network priorities, in Proc. 2018 Conf. ACM Special Interest Group on Data Communication, New York, NY, USA, 2018, pp. 221–235.
22   A. Briones, A. Mallorquí, A. Zaballos, and R. M. de Pozuelo Adaptive and aggressive transport protocol to provide QoS in cloud data exchange over Long Fat Networks[J]. Future Generat. Comput. Syst., 2021, 115: 34- 44
doi: 10.1016/j.future.2020.08.043
23   B. J. Zhou, J. Li, X. Y. Wang, Y. Gu, L. Xu, Y. Q. Hu, and L. H. Zhu Online internet traffic monitoring system using spark streaming[J]. Big Data Mining and Analytics, 2018, 1 (1): 47- 56
doi: 10.26599/BDMA.2018.9020005
24   A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas A survey on big data for network traffic monitoring and analysis[J]. IEEE Trans. Netw. Serv. Manage., 2019, 16 (3): 800- 813
doi: 10.1109/TNSM.2019.2933358
25   S. Dhingra, R. B. Madda, R. Patan, P. C. Jiao, K. Barri, and A. H. Alavi Internet of things-based fog and cloud computing technology for smart traffic monitoring[J]. Int. Things, 2020, 14: 100175
No related articles found!