Please wait a minute...
  2021, Vol. 2 Issue (3): 244-257    doi: 10.23919/ICN.2021.0017
Download: PDF (6956 KB)      HTML
Export: BibTeX | EndNote (RIS)      
Received: 13 September 2021      Online: 07 December 2021
Cite this article:

. . , 2021, 2: 244-257.

URL:     OR

DL group Detector Reference DL models
Data driven DL model [33, 58, 59] DNN, CNN, RNN
Model driven PGD-based [60, 61] DetNet
Iterative algorithm [62, 63] OAMP-Net
[64] MMNet
SD [65] FS-Net
TS [66] FS-Net
1   Z. E. Ankarali, B. Pek?z, and H. Arslan Flexible radio access beyond 5G: A future projection on waveform, numerology, and frame design principles[J]. IEEE Access, 2017, 5: 18295- 18309
doi: 10.1109/ACCESS.2017.2684783
2   H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sj?land, and F. Tufvesson 6G wireless systems: Vision, requirements, challenges, insights, and opportunities[J]. Proc. IEEE, 2021, 109 (7): 1166- 1199
doi: 10.1109/JPROC.2021.3061701
3   K. David and H. Berndt 6G vision and requirements: Is there any need for beyond 5G[J]. IEEE Vehicul. Technol. Mag., 2018, 13 (3): 72- 80
doi: 10.1109/MVT.2018.2848498
4   L. Zhang, Y. C. Liang, and D. Niyato 6G visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence[J]. China Commun., 2019, 16 (8): 1- 14
doi: 10.23919/JCC.2019.08.001
5   G. Y. Liu, Y. H. Huang, N. Li, J. Dong, J. Jin, Q. X. Wang, and N. Li Vision, Requirements and network architecture of 6G mobile network beyond 2030[J]. China Commun., 2020, 17 (9): 92- 104
doi: 10.23919/JCC.2020.09.008
6   M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi Toward 6G networks: Use cases and technologies[J]. IEEE Commun. Mag., 2020, 58 (3): 55- 61
doi: 10.1109/MCOM.001.1900411
7   W. Saad, M. Bennis, and M. Z. Chen A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Netw., 2020, 34 (3): 134- 142
doi: 10.1109/MNET.001.1900287
8   A. Dogra, R. K. Jha, and S. Jain A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies[J]. IEEE Access, 2020, 9: 67512- 67547
9   B. F. Ji, Y. N. Wang, K. Song, C. G. Li, H. Wen, V. G. Menon, and S. Mumtaz A survey of computational intelligence for 6G: Key technologies, applications and trends[J]. IEEE Trans. Indus. Inf., 2021, 17 (10): 7145- 7154
doi: 10.1109/TII.2021.3052531
10   X. H. You, C. X. Wang, J. Huang, X. Q. Gao, Z. C. Zhang, M. Wang, Y. M. Huang, C. Zhang, Y. X. Jiang, J. H. Wang, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts[J]. Sci. China Inf. Sci., 2021, 64 (1): 110301
doi: 10.1007/s11432-020-2955-6
11   S. F. Han, T. Xie, C. L. I, L. Chai, Z. M. Liu, Y. F. Yuan, and C. F. Cui Artificial-intelligence-enabled air interface for 6G: Solutions, challenges, and standardization impacts[J]. IEEE Commun. Mag., 2020, 58 (10): 73- 79
doi: 10.1109/MCOM.001.2000218
12   R. Shafin, L. J. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. C. Zhang Artificial intelligence-enabled cellular networks: A critical path to beyond-5G and 6G[J]. IEEE Wirel. Commun., 2020, 27 (2): 212- 217
doi: 10.1109/MWC.001.1900323
13   M. T. Lin and Y. P. Zhao Artificial intelligence-empowered resource management for future wireless communications: A survey[J]. China Commun., 2020, 17 (3): 58- 77
doi: 10.23919/JCC.2020.03.006
14   J. K. Zhu, M. Zhao, S. H. Zhang, and W. Y. Zhou Exploring the road to 6G: ABC—foundation for intelligent mobile networks[J]. China Commun., 2020, 17 (6): 51- 67
doi: 10.23919/JCC.2020.06.005
15   P. Zhang, K. Niu, H. Tian, G. F. Nie, X. Q. Qin, Q. Wei, and J. Zhang Technology prospect of 6G mobile communications[J]. J. Commun., 2019, 40 (1): 140- 148
16   W. Weaver, Recent contributions to the mathematical theory of communication, in The Mathematical Theory of Communication, C. E. Shannon and W. Weaver, Eds. Urbana, FL, USA: University of Illinois Press, 1949.
17   C. E. Shannon A mathematical theory of communication[J]. Bell Syst. Tech. J., 1948, 27 (3): 379- 423
doi: 10.1002/j.1538-7305.1948.tb01338.x
18   R. Carnap and Y. Bar-Hillel An outline of a theory of semantic information[J]. J. Symb. Logic, 1954, 19 (3): 230- 232
19   Y. Bar-Hillel and R. Carnap Semantic information[J]. Br. J. Philos. Sci., 1953, 4 (14): 147- 157
doi: 10.1093/bjps/IV.14.147
20   J. Barwise and J. Perry Situations and attitudes[J]. J. Philos., 1981, 78 (11): 668- 691
doi: 10.2307/2026578
21   L. Floridi Outline of a theory of strongly semantic information[J]. Minds Mach., 2004, 14 (2): 197- 221
doi: 10.1023/B:MIND.0000021684.50925.c9
22   S. D’Alfonso On quantifying semantic information[J]. Information, 2011, 2 (1): 61- 101
doi: 10.3390/info2010061
23   A. De Luca and S. Termini A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[J]. Inf. Control, 1972, 20 (4): 301- 312
doi: 10.1016/S0019-9958(72)90199-4
24   A. De Luca and S. Termini Entropy of L-fuzzy sets [J]. Inf. Control, 1974, 24 (1): 55- 73
doi: 10.1016/S0019-9958(74)80023-9
25   W. L. Wu General information source and general information entropy[J]. J. Beijing Univ. Posts Telecommun., 1982, (1): 29- 41
26   K. Niu, J. Dai, P. Zhang, S. Yao, S. Wang, 6G-oriented semantic communications, Mobile Communications, (in Chinese), vol. 45, no. 4, pp. 85–90, 2021.
27   H. Q. Xie, Z. J. Qin, G. Y. Li, and B. H. Juang Deep learning enabled semantic communication systems[J]. IEEE Trans. Signal Process., 2021, 69: 2663- 2675
doi: 10.1109/TSP.2021.3071210
28   N. Farsad, M. Rao, and A. Goldsmith, Deep learning for joint source-channel coding of text, in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018, pp. 2326–2330.
29   E. Bourtsoulatze, D. B. Kurka, and D. Gündüz Deep joint source-channel coding for wireless image transmission[J]. IEEE Trans. Cogn. Commun. Netw., 2019, 5 (3): 567- 579
doi: 10.1109/TCCN.2019.2919300
30   M. Jankowski, D. Gündüz, and K. Mikolajczyk, Deep joint source-channel coding for wireless image retrieval, presented at 2020 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020, pp. 5070–5074.
31   D. B. Kurka and D. Gündüz DeepJSCC-f: deep joint source-channel coding of images with feedback [J]. IEEE J. Select. Areas Infor. Theory, 2020, 1 (1): 178- 193
doi: 10.1109/JSAIT.2020.2987203
32   T. O’Shea and J. Hoydis An introduction to deep learning for the physical layer[J]. IEEE Trans. Cogn. Commun. Netw., 2017, 3 (4): 563- 575
doi: 10.1109/TCCN.2017.2758370
33   H. Ye, G. Y. Li, and B. H. Juang Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wirel. Commun. Lett., 2018, 7 (1): 114- 117
doi: 10.1109/LWC.2017.2757490
34   N. Wu, X. D. Wang, B. Lin, and K. Y. Zhang A CNN-based end-to-end learning framework toward intelligent communication systems[J]. IEEE Access, 2019, 7: 110197- 110204
doi: 10.1109/ACCESS.2019.2926843
35   B. H. Zhu, J. T. Wang, L. Z. He, and J. Song Joint transceiver optimization for wireless communication PHY using neural network[J]. IEEE J. Sel. Areas Commun., 2019, 37 (6): 1364- 1373
doi: 10.1109/JSAC.2019.2904361
36   H. H. Wu, Y. T. Zhang, X. Q. Zhao, N. B. Zhu, and M. Coates, End-to-end physical layer communication using bi-directional GRUs for ISI channels, presented at 2020 IEEE Globecom Workshops, Taipei, China, 2020, pp. 1–6.
37   T. Erpek, T. J. O’Shea, and T. C. Clancy, Learning a physical layer scheme for the MIMO interference channel, presented at 2018 IEEE Int. Conf. on Communications, Kansas City, MO, USA, 2018, pp. 1–5.
38   T. J. O’Shea, T. Erpek, and T. C. Clancy, Physical layer deep learning of encodings for the MIMO fading channel, presented at the 2017 55th Annu. Allerton Conf. on Communication, Control, and Computing, Monticello, IL, USA, 2017, pp. 76–80.
39   T. J. Mu, X. H. Chen, L. Chen, H. R. Yin, and G. Wei, Spatial-time MIMO autoencoder for physical layer, presented at 2020 Int. Conf. on Wireless Communications and Signal Processing, Nanjing, China, 2020, pp. 143–148.
40   D. H. Wu, M. Nekovee, and Y. Wang Deep learning-based Autoencoder for m-User wireless interference channel Physical layer design[J]. IEEE Access, 2020, 8: 174679- 174691
doi: 10.1109/ACCESS.2020.3025597
41   V. Raj and S. Kalyani Design of communication systems using deep learning: A variational inference perspective[J]. IEEE Trans. Cognit. Commun. Netw., 2020, 6 (4): 1320- 1334
doi: 10.1109/TCCN.2020.2985371
42   C. H. Lin, C. C. Wu, K. F. Chen, and T. S. Lee, A variational autoencoder-based secure transceiver design using deep learning, presented at 2020 IEEE Global Communications Conf., Taipei, China, 2020, pp. 1–7.
43   Z. J. Qin, H. Ye, G. Y. Li, and B. H. F. Juang Deep learning in physical layer communications[J]. IEEE Wirel. Commun., 2019, 26 (2): 93- 99
doi: 10.1109/MWC.2019.1800601
44   F. A. Aoudia and J. Hoydis, End-to-end learning of communications systems without a channel Model, presented at the 2018 52nd Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2018, pp. 298–303.
45   H. Ye, G. Y. Li, B. F. Juang, and K. Sivanesan, Channel agnostic end-to-end learning based communication systems with conditional GAN, presented at 2018 IEEE Globecom Workshops, Abu Dhabi, United Arab Emirates, 2018, pp. 1–5.
46   H. T. He, S. Jin, C. K. Wen, F. F. Gao, G. Y. Li, and Z. B. Xu Model-driven deep learning for physical layer communications[J]. IEEE Wirel. Commun., 2019, 26 (5): 77- 83
doi: 10.1109/MWC.2019.1800447
47   Y. F. He, H. T. He, C. K. Wen, and S. Jin Model-driven deep learning for massive multiuser MIMO constant envelope precoding[J]. IEEE Wirel. Commun. Lett., 2020, 9 (11): 1835- 1839
doi: 10.1109/LWC.2020.3005027
48   X. Ru, L. Wei, and Y. Y. Xu, Model-driven channel estimation for OFDM systems based on image super-resolution network, presented at the 2020 IEEE 5th Int. Conf. on Signal and Image Processing, Nanjing, China, 2020, pp. 804–808.
49   Y. H. Zhang, Y. F. Mu, Y. Liu, T. K. Zhang, and Y. Qian Deep learning-based beamspace channel estimation in mmWave massive MIMO systems[J]. IEEE Wirel. Commun. Lett., 2020, 9 (12): 2212- 2215
doi: 10.1109/LWC.2020.3019321
50   Y. Jin, J. Y. Zhang, B. Ai, and X. Zhang Channel estimation for mmWave massive MIMO with convolutional blind denoising network[J]. IEEE Commun. Lett., 2020, 24 (1): 95- 98
doi: 10.1109/LCOMM.2019.2952845
51   Y. D. Dong, H. X. Wang, and Y. D. Yao Channel estimation for one-bit multiuser massive MIMO using conditional GAN[J]. IEEE Commun. Lett., 2021, 25 (3): 854- 858
doi: 10.1109/LCOMM.2020.3035326
52   M. B. Mashhadi and D. Gündüz Pruning the pilots: deep learning-based pilot design and channel estimation for MIMO-OFDM systems[J]. IEEE Trans. Wirel. Commun., 2021, 20 (10): 6315- 6328
doi: 10.1109/TWC.2021.3073309
53   X. H. Wei, C. Hu, and L. L. Dai Deep learning for beamspace channel estimation in millimeter-wave massive MIMO systems[J]. IEEE Trans. Commun., 2021, 69 (1): 182- 193
doi: 10.1109/TCOMM.2020.3027027
54   J. Pan, H. G. Shan, R. P. Li, Y. X. Wu, W. H. Wu, and T. Q. S. Quek Channel estimation based on deep learning in vehicle-to-everything environments[J]. IEEE Commun. Lett., 2021, 25 (6): 1891- 1895
doi: 10.1109/LCOMM.2021.3059922
55   M. B. Fischer, S. Dörner, S. Cammerer, T. Shimizu, B. Cheng, H. S. Lu, and S. ten Brink, Wiener filter versus recurrent neural network-based 2D-channel estimation for V2X communications, arXiv preprint arXiv: 2102.03163, 2021.
56   ETSI, 3GPP TS 38.211 v16.5. 0 Physical channels and modulation, ETSI, 2021, pp. 71–73.
57   A. Le Ha, T. Van Chien, T. H. Nguyen, W. Choi, and V. D. Nguyen, Deep learning-aided 5G channel estimation, presented at the 2021 15th Int. Conf. on Ubiquitous Information Management and Communication, Seoul, Republic of Korea, 2021, pp. 1–7.
58   M. Honkala, D. Korpi, and J. M. J. Huttunen DeepRx: fully convolutional deep learning receiver[J]. IEEE Trans. Wirel. Commun., 2021, 20 (6): 3925- 3940
doi: 10.1109/TWC.2021.3054520
59   S. Y. Wang, R. G. Yao, T. A. Tsiftsis, N. I. Miridakis, and N. Qi Signal detection in uplink time-varying OFDM systems using RNN with bidirectional LSTM[J]. IEEE Wirel. Commun. Lett., 2020, 9 (11): 1947- 1951
doi: 10.1109/LWC.2020.3009170
60   N. Samuel, T. Diskin, and A. Wiesel, Deep MIMO detection, presented at the 2017 IEEE 18th Int Workshop on Signal Processing Advances in Wireless Communications, Sapporo, Japan, 2017, pp. 1–5.
61   N. Samuel, T. Diskin, and A. Wiesel Learning to detect[J]. IEEE Trans. Signal Process., 2019, 67 (10): 2554- 2564
doi: 10.1109/TSP.2019.2899805
62   H. T. He, C. K. Wen, S. Jin, and G. Y. Li, A model-driven deep learning network for MIMO detection, presented at 2018 IEEE Global Conf. on Signal and Information Proc., Anaheim, CA, USA, 2018, pp. 584–588.
63   H. T. He, C. K. Wen, S. Jin, and G. Y. Li Model-driven deep learning for MIMO detection[J]. IEEE Trans. Signal Process., 2020, 68: 1702- 1715
doi: 10.1109/TSP.2020.2976585
64   M. Khani, M. Alizadeh, J. Hoydis, and P. Fleming Adaptive neural signal detection for massive MIMO[J]. IEEE Trans. Wirel. Commun., 2020, 19 (8): 5635- 5648
doi: 10.1109/TWC.2020.2996144
65   N. T. Nguyen and K. Lee Deep learning-aided tabu search detection for large MIMO systems[J]. IEEE Trans. Wirel. Commun., 2020, 19 (6): 4262- 4275
doi: 10.1109/TWC.2020.2981919
66   N. T. Nguyen, K. Lee, and H. Y. Dai Application of deep learning to sphere decoding for large MIMO systems[J]. IEEE Trans. Wirel. Commun., 2021, 20 (10): 6787- 6803
doi: 10.1109/TWC.2021.3076527
67   Y. Wang, W. Liu, and L. Q. Fang, Adaptive modulation and coding technology in 5G system, presented at 2020 Int. Wireless Commun. and Mobile Computing, Limassol, Cyprus, 2020, pp. 159–164.
68   A. Al Amin, D. Basak, T. Khadem, M. D. Hossen, and M. S. Islam, Analysis of modulation and coding scheme for 5th generation wireless communication system, presented at 2016 Int. Conf. on Computing, Communication and Automation, Greater Noida, India, 2016, pp. 1545–1549.
69   X. M. Wang, H. W. Li, and Q. Wu, Optimizing adaptive coding and modulation for satellite network with ML-based CSI prediction, presented at 2019 IEEE Wireless Communications and Networking Conf., Marrakesh, Morocco, 2019, pp. 1–6.
70   Z. C. Zhu and A. K. Nandi, Automatic Modulation Classification: Principles, Algorithms and Applications, Chichester, West Sussex, UK: Wiley, 2015.
71   Q. Ma, Research on adaptive coding and modulation technology based on machine learning, BS dissertation, Beijing University of Posts and Telecommunications, Beijing, China, 2021, pp. 69–73.
72   ETSI, 3GPP TS 38.211 v16.5. 0 Physical channels and modulation, ETSI, 2021, pp. 94–95.
73   M. Elwekeil, S. B. Jiang, T. B. Wang, and S. L. Zhang Deep convolutional neural networks for link adaptations in MIMO-OFDM wireless systems[J]. IEEE Wirel. Commun. Lett., 2019, 8 (3): 665- 668
doi: 10.1109/LWC.2018.2881978
74   S. Kojima, K. Maruta, and C. J. Ahn, High-precision SNR estimation by CNN using PSD image for adaptive modulation and coding, presented at the 2020 IEEE 91st Vehicular Technology Conf., Antwerp, Belgium, 2020, pp. 1–5.
75   I. Ahmad and K. Chang Effective SNR mapping and link adaptation strategy for next-generation underwater acoustic communications networks: A cross-layer approach[J]. IEEE Access, 2019, 7: 44150- 44164
doi: 10.1109/ACCESS.2019.2908018
76   H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta Cell-free massive MIMO versus small cells[J]. IEEE Trans. Wirel. Commun., 2017, 16 (3): 1834- 1850
doi: 10.1109/TWC.2017.2655515
77   S. Buzzi and C. D’Andrea Cell-free massive MIMO: User-centric approach[J]. IEEE Wirel. Commun. Lett., 2017, 6 (6): 706- 709
doi: 10.1109/LWC.2017.2734893
78   J. Y. Zhang, S. F. Chen, Y. Lin, J. K. Zheng, B. Ai, and L. Hanzo Cell-free massive MIMO: A new next-generation paradigm[J]. IEEE Access, 2019, 7: 99878- 99888
doi: 10.1109/ACCESS.2019.2930208
79   H. Q. Ngo, L. N. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson On the total energy efficiency of cell-free massive MIMO[J]. IEEE Trans. Green Commun. Netw., 2018, 2 (1): 25- 39
doi: 10.1109/TGCN.2017.2770215
80   H. T. Dao and S. Kim Power allocation and user-AP connection in distributed massive MIMO systems[J]. IEEE Commun. Lett., 2021, 25 (2): 565- 569
doi: 10.1109/LCOMM.2020.3036086
81   L. Sanguinetti, A. Zappone, and M. Debbah, Deep learning power allocation in massive MIMO, presented at the 2018 52nd Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2018, pp. 1257–1261.
82   T. Van Chien, E. Bj?rnson, and E. G. Larsson Joint power allocation and load balancing optimization for energy-efficient cell-free massive MIMO networks[J]. IEEE Trans. Wirel. Commun., 2020, 19 (10): 6798- 6812
doi: 10.1109/TWC.2020.3006083
83   A. Zappone, M. Di Renzo, M. Debbah, T. T. Lam, and X. W. Qian, Model-aided wireless artificial intelligence: Embedding expert knowledge in deep neural networks towards wireless systems optimization, arXiv preprint arXiv: 1808.01672, 2018.
84   A. Zappone, M. Di Renzo, and M. Debbah Wireless networks design in the era of deep learning: Model-based, AI-based, or both[J]. IEEE Trans. Commun., 2019, 67 (10): 7331- 7376
doi: 10.1109/TCOMM.2019.2924010
85   Y. Al-Eryani, M. Akrout, and E. Hossain Multiple access in cell-free networks: Outage performance, dynamic clustering, and deep reinforcement learning-based design[J]. IEEE J. Select. Areas Commun., 2021, 39 (4): 1028- 1042
doi: 10.1109/JSAC.2020.3018825
No related articles found!